

[Naik*, 5(11): November 2018] ISSN 2348 – 8034
DOI- 10.5281/zenodo.1482356 Impact Factor- 5.070

 (C)Global Journal Of Engineering Science And Researches

29

GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES

OPTIMAL NETWORK SERVICE CHAIN PROVISION COMPUTING
B.R.Vamsi Krishna Naik

*1
 & V. SaraswathiBai

2

*1&2
Assistant Professor, CSE department.

Abstract
Service chains consist of a set of network services, such as firewalls or application delivery controllers, which are

interconnected through a network to support various applications. While it is not a new concept, there has been an

extremely important new trend with the rise of software-defined network (SDN) and Network Function
Virtualization (NFV). The combination of SDN and NFV can make the service chain and application provisioning

process much shorter and simpler. In this paper, we study the provisioning of service chains jointly with the

number/location of virtual network functions (VNFs). While chains are often built to support multiple applications,

the question arises as how to plan the provisioning of service. It requires choosing carefully the number and the

location of the VNFs. We propose an exact mathematical model using decomposition methods whose solution is

scalable in order to conduct such an investigation. We conduct extensive numerical experiments, and show we can

solve exactly the routing of service chain requests in a few minutes for networks with up to 50 nodes, and traffic

requests between all pairs of nodes. Detailed analysis is then made on the best compromise between minimizing the

bandwidth requirement and minimizing the number of VNFs and optimizing their locations using different data sets.

Keywords: Service function chains, column generation, software defined network, network function virtualization,

optimization.

I. INTRODUCTION

ETWORK function virtualization (NFV) virtualizes network services and applications that once ran on hardware

appliances. In the context of Software-Defined Networks (SDNs), the objective is to replace many network devices

with more flexible software running on physical servers or virtual machines/clouds, enabling much more flexible
service chaining. Indeed, software service chaining enables operators to configure network services dynamically and

addresses the requirement for both network optimization, through better resource utilization, and monetization,

through the provisioning of services that are customer tailored.Very large networks have massive inventory of

different device types, including, e.g., routers, firewalls, session border controllers, Virtual Private Network (VPN)

gateways. Many of these types of equipment spend a lot of time unused. With network function virtualization, a

server that is a firewall today can be a VPN gateway tomorrow with just a shift in software. Relying on software for

network functions opens the door to a new level of input and innovation: there is no need anymore to depend on

innovation from traditional hardware vendors.

In the past, building a service chain to support a new application took a great deal of time and effort. It meant

acquiring network devices and cabling them together in the required sequence. Each service required a specialized

hardware device, and each device had to be individually configured with its own command syntax. Moving network
functions into software means that building a service chain no longer requires acquiring hardware. In addition, as

application loads often increase over time, building a chain that would not need to be reconfigured too often meant

over-provisioning to support growth. Using virtual machines eases the process of requiring resources in addition to

optimizing their usage: it is easy to quickly (re-)assign more space or computational requirements.

The goal of Service Function Chaining (SFC) is to develop a set of architectural building blocks that will enable

network operators to create a service topology and instantiate a service function path across the network. SFC covers

placement of network functions, service chain management, diagnostics and security models, see Table I for

N

[Naik*, 5(11): November 2018] ISSN 2348 – 8034
DOI- 10.5281/zenodo.1482356 Impact Factor- 5.070

 (C)Global Journal Of Engineering Science And Researches

30

examples of network elements that can be incorporated into a service chain.Problem we consider here is SFC

provisioning, which comprises determining which VNFs are placed on which nodes and how VNF instances are

assigned to SFCs. Note that a VNF instance can be shared by several SFCs if its capacity allows it.

The placement and assignment affect the traffic routing from the SFC through the servers or virtual machines

network. SFC provisioning must offer the best compromise between the conflicting goals of minimizing

infrastructure/bandwidth resources, end-to-end latency (i.e., SLAs) and minimizing the replica numbers of VNFs

and SFCs. The location of the VNFs affects the end-to-end latency incurred by the packets traversing a particular

SFC. In addition, a poor placement will cause the flow to traverse the same path-segments back and forth inside the

network, increasing the network delay and consuming more bandwidth. Moreover, we consider a static scenario

where all services and requests are known in advance. This type of scenario can arise in different situations.

-- Firstly, as time goes, dynamic allocation of the network resource could lead to inefficient usage of the network.

Operators might be interested in finding an optimal routing for the current set of provisioned requests. Secondly, our
model could be used to assess the quality of methods developed for dynamic settings. Although routing requests

optimally without knowledge of the future is hard, we could compare a dynamic solution to the one with perfect

knowledge. Lastly, we can easily adapt our model for network dimensioning. Using estimations on the traffic in the

network, we could decide the minimal capacities of link and nodes in the network with few changes in our model.

Our contribution is the design of a mathematical model with a decomposition scheme that allows a scalable exact

solution scheme, while nearly all previous algorithms of the literature (see next section) are either heuristics or non-

scalable exact algorithms. To the best of our knowledge, we are the first to propose an exact model which scales

well with the number of nodes and requests. We are able to solve within a few minutes instances with almost 10,000

different demands. The model then allows the investigation of the best compromise between the numbers of VNF

replicas, the best placement of VNFs, the resource requirements and the end-to-end delays.

The paper is organized as follows. In Section III, we review the previous work related to SFC provisioning and VNF
placement. A detailed and formal statement of the Service Function Chain Provisioning problem is given in Section

II. Optimization models are described in Section IV, first a classical ILP (Integer Linear Program) model, and then a

decomposition ILP one. Solution process and algorithms are depicted in Section V. We then present extensions of

the models to handle the case in which the number of VNF replicas is limited in Section VI. Numerical results are

described in Section VII. Conclusions are drawn in the last section.

II. SERVICE FUNCTION CHAIN PROVISIONING PROBLEM

We first provide a detailed statement of the Service Function Chain Provisioning Problem and then discuss the
layered graph concept that will be used in the optimization models of Section IV.

A. Problem Statement:

We consider a SDN network that is represented by a graph G = (V,L) where V represents the set of nodes and L the

set of links. Each service chain c is defined as an ordered sequence of Virtual Network Functions (VNFs), with some

functions possibly repeated. We denote by ncthe number of

[Naik*, 5(11): November 2018] ISSN 2348 – 8034
DOI- 10.5281/zenodo.1482356 Impact Factor- 5.070

 (C)Global Journal Of Engineering Science And Researches

31

TABLE II

functions in c, i.e., the length of the sequence. Let C be the set of all service chains.

Demand is defined by a set of requests, where each request is characterized by a source vs, a destination vd, a service

chain c and a bandwidth requirement, i.e., units. Let SD the set of node pairs with some demand.

Let F be the set of network virtual functions, indexed by f. The amount of (fractional) cores required by function f in

any chain is equal to ∆f per unit of bandwidth. Consequently, Dsd
c× ∆ficrepresents the number of (fractional) cores

for request (vs,vd,c,Dsd
c) at the node hosting function fi

c, the ith function of chain c. Note that the number of cores

that a node possesses and that it uses is integral in the model, but cores can be shared by several demands or

functions, using a fractional amount of cores.1

We assume that only a subset of nodes V VNF ⊆V can host VNFs. Indeed, deployment of VNFs can be made on
general purpose servers or standard IT platforms like highperformance switches, service, and storage, see, e.g., [3]

for more details. Running a VNF requires a certain amount of resources,2e.g., CPU, memory, disk, while the amount

of required resources usually depends on the volume of traffic that passes through it. Efficient scheduling algorithms

are indeed required in order to take care of the VNF scheduling and the latency requirements of the requests once

the mapping of VNF on virtual nodes is done, see, e.g., [4], [5], but goes beyond the scope of this study.

Consequently, each node v ∈ V VNF has a given core capacity CCv. Similarly, each link of the network has a transport

capacity CAP. A summary of the notations can be found in Table II.

[Naik*, 5(11): November 2018] ISSN 2348 – 8034
DOI- 10.5281/zenodo.1482356 Impact Factor- 5.070

 (C)Global Journal Of Engineering Science And Researches

32

The Service Function Chain Provisioning Problem can be formally stated as follows. For a given demand D,

where each individual demand is characterized by a 4- tuple (vs,vd,c,Dsd
c), identify the best function locations in

order to both provision the set C of SFCs and demand D, while Fig. 1.Layered Graph.

Minimizing the overall bandwidth requirement subject to the core and transport capacities (as expressed by CAPfor

the links and by CCvfor the nodes), and optionally to a limit on the number of NFV nodes and SFC replicas.

When provisioning SFCs, each chain is assigned a path in which functions of c are encountered in the same order as

in c, with some functions possibly located at the same node.

B. Layered Graph:

Following a similar idea as in [6], we use a layered graph GL in order to integrate the search of the function location

within the search of a route for each connection. GL is defined as follows. The initial network graph G is transformed

into a layered graph GL by adding maxnclayers to graph c∈CG (counting G as the base layer, i.e., layer 0), and where

each layer is an exact copy of the original graph G. For every node v ∈ V , let vi be the corresponding node in the ith

layer (i= 1,...,nc). Every (i− 1,i) layer pair is connected by vertical links from vi−1 to vi, see Figure 1 for an

illustration. Finding a path and a chain placement for a request (vs,vd,c,Dsd
c) consists in finding a path from node vson

the first layer to node vdon the (nc+1)th layer.

Indeed, each layer represents the progression of the chain, e.g., being on the second layer means that the first
function of the chain is already executed. The placement of the node is given by the link used to switch between

layers.

All Integer Linear Programming (ILP) models presented in Section IV use the layered graph.

III. RELATED WORK

Following the NFV initiative in 2012 [7], several surveys are now available on NFV, see, e.g., [3], [8], [9] where the

various NFV challenges are discussed.

Several works propose partial and exact mathematical formulations for the SFC provisioning problem. Researchers

consider different objective functions. Note that some work study the SFC provisioning problem using game theory

[10] or approximation algorithms [26], [29], [30].

Hybrid mathematical formulations. In Martini et al.

[Naik*, 5(11): November 2018] ISSN 2348 – 8034
DOI- 10.5281/zenodo.1482356 Impact Factor- 5.070

 (C)Global Journal Of Engineering Science And Researches

33

[16] provide an exact model minimizing the number of instances of functions in the network. However, they

consider only a couple of tens of requests. Saviet al. [17] propose an exact formulation in which the number of VNF

nodes is minimized. Their model takes into account additional costs inherent to multi-core environment. However,
they only provide results on a small network. In Bari et al. [18], the authors consider the operational expenditure

(OpEx) for a daily traffic scenario as their objective function. Mohammadkhanet al. [19] propose an exact model

along with heuristics aiming at minimizing the maximum usage of CPU and links. The scope of the experiments is

limited to the case in which the number of cores per service is limited to one.

The ILPs proposed in the literature do not scale for large networks. We report the size of the instances they solve in

Table III. We can observe that they are rather small in comparison with the ones we used in our computational

results, see Section VII. To the best of our knowledge, using column generation, our work is the first to optimally

solve the problem of SFC placement in a network with 50 nodes and for all-to-all demand scenarios (10,000

requests). This model has been extended to propose energy efficient solutions in [28] and to support failure

protection in [27]. Even tough some works [16], [17] minimize the number of function replications in the network,
we are also the first to consider constraints on the number of function replications throughout the whole network

while minimizing bandwidth usage.

Table III maximum topology size and number of requests solved in a reasonable amount of time for models found

IV. OPTIMIZATION MODELS

We first present a compact Integer Linear Program (ILP) model, called NFV_ILP, in Section IV-A and then a

reformulation with a Column Generation (CG) decomposition model, called NFV_CG, in Section IV-B.

A. Model NFV_ILP

Model NFV_ILP is a compact Integer Linear Program based on the layered graph described in Section II-B.

Variables. Model NFV_ILP uses two sets of variables. The first set is a set of 0-1 variables defined as

follows.

Variable if the route of goes through link at layer iin the layered graph GL, 0 otherwise.

The second set corresponds to 0-1 variables αsd,c,i
vsuch that αsd,c,i

v= 1 if fi
cis installed on node v. Note that we will use

the convention that

if .

Objective. Minimization of the bandwidth requirements

. (1)

Constraints. There are three sets of constraints Flow constraints. They translate the requirement of a path from

source to destination going through the locations of the functions of the service chain requested by each node pair

demand. Only the source node on the first layer and the destination node on the last layer can have a positive

outgoing and incoming flow, respectively. Let ω+(u) and ω−(u) denote the set of outgoing and incoming links of

node v, respectively.

[Naik*, 5(11): November 2018] ISSN 2348 – 8034
DOI- 10.5281/zenodo.1482356 Impact Factor- 5.070

 (C)Global Journal Of Engineering Science And Researches

34

ifv = vs

v 0 else

 (3)

else

(vs,vd) ∈SD, v ∈ V, c ∈ Csd. (4)

Link capacity. Usage of a given link is distributed over the different layers of graph GL and cannot exceed the link

transport capacity CAP .

Node capacity. The placement of a function in node v is described by the usage of cross-layer link (vi−1,vi). The

usage of a node is determined by the set of links that are used to move from one layer to the next, and should not

exceed its core capacity.

VNF. (6)

B. Model NFV_CG

As we will see in Section VII-C, the NFV_ILP model does not scale well for medium to large networks because of

its very large number of variables and αsd,c,i: L ×SD× |C|×|F|. We thus propose an alternate model, called

NFV_CG model, with a single set of variables. The NFV_CG model relies on the concept of configurations, where a

configuration is defined by a potential path provisioning, called service path in the sequel, which is next described

formally below for a given request.

A Service Path for request (vs,vd,c,Dsd
c) is defined by: (i) a network path, i.e., an ordered set of nodes from the

source to the destination node of the request, and (ii) a set of node locations for the VNFs in the SFC request. Each

Service Path is thus specific to a given request and its SFC. However, a given SFC may be shared by several

requests.

We use the following additional parameters.

Parameters

: Service Path from vsto vd, where denotes the set of paths from vsto vdfor chain c. A service path is
composed of a path in the network and a set of function locations (v,fi

c), identifying the node location of the

functions in the chain.

[Naik*, 5(11): November 2018] ISSN 2348 – 8034
DOI- 10.5281/zenodo.1482356 Impact Factor- 5.070

 (C)Global Journal Of Engineering Science And Researches

35

• ap
iv∈{0,1}, where ap

iv= 1 if fi
cis installed on node v for Service Path .

denotes the number of occurrences of link inpath p.

Variables

• yp
sd,c≥ 0, where yp

sd,c= 1 if request is forwarded through service path p, 0 otherwise.

Objective

 (7)

As for Model NFV_ILP, the objective is to minimize the amount of bandwidth used in the SDN network. For a path,

this amount is its number of hops, multiplied by the bandwidth

Fig. 2. Description of the column generation algorithm requirement of the request. The set of constraints can then

be expressed as follows.

Constraints:
Exactly one path per demand and per chain:

 .

 (8)Link capacity: for all ,

Node capacity: for all v ∈ V VNF,

1 The complexity of a function may not always scale linearly with the unit of bandwidth of the function. We made

this assumption to simplify the model and experiments. In fact, we could easily change the model to take into

account other complexity models, such as constant or any linear function (or any function which has a linear

approximation).
1 We did not consider cases with correlated VNF replicas or synchronization constraints.

V. SOLUTION SCHEME

Model NFV_ILP can be easily solved by an ILP solver such as Cplex. Model NFV_CG requires more attention as,
at first look, it has an exponential number of variables. Indeed, its linear relaxation can be solved exactly using

column generation ([20]), using a limited number of configurations, i.e., variables. An integer solution is next

derived, together with its accuracy. Details are given below.

A. Generalities on Column Generation

The Column Generation solution scheme requires a decomposition model, called Master Problem (M), which

combines the use of the so-called Restricted Master Problem (RMP), i.e., MP with a very small subset of

configurations/columns, and the so-called Pricing Problem (PP), i.e., a configuration generator. Consequently, the

Restricted Master Problem corresponds to (7) - (10) with a very limited number of variables. Its role is to select the

best provisioning, one for each request, while the pricing problem generates improving configurations, i.e.,

configurations such that, if added to the current RMP, improves the value of its linear relaxation.

The column generation algorithm is depicted in Figure 2. RMP and PP are solved alternately until the PP is unable

to generate any new improving configuration/service path, for any request. In such a case, the optimal solution of the

[Naik*, 5(11): November 2018] ISSN 2348 – 8034
DOI- 10.5281/zenodo.1482356 Impact Factor- 5.070

 (C)Global Journal Of Engineering Science And Researches

36

linear relaxation of Model NFV_CG has been reached, and we derived an ILP solution, using an ILP solver on the

last RMP. Accuracy of the ILP solution is measured by , where is the optimal value of

the LP (Linear Programming) relaxation, and z˜ILPdenotes the value of the ILP solution.

B. Pricing Problem

The role of the Pricing Problem is to generate a valid Service Path for a given request. Once again, the formulation

relies on the layer graph (G
L
) introduced in Section II-B. Its objective is defined by the so-called reduced cost (see

[20] if not familiar with linear programming concepts).

• u(j) represents the vector of dual variables of constraints (j) in the RMP. Note that these values are given as
input to the pricing problem in the column generation solution process.

Variables:

• αi
v ∈{0,1}, where ai

v= 1 if fi
cis installed on node v,

0 otherwise.

, where if the flow forwarded on link on layer i, i.e., links in each layer in graph GL , 0

otherwise.

The service path generator (pricing problem) is written for each request .

Flow conservation: they correspond to flow constraints (i.e., route) from the ith function to the (i+ 1)th function of
the service chain associated with the vsvdrequest for which the pricing problem is solved (constraints (12)), and then

flow constraints from the source node to the location of the first function of the service chain (constraints (13)), and

similarly from the location of the last function of the service chain to the destination node (constraints (14)). Note

that ai
v= 0 for all nodes that are not VNF capable. Observe that the next set of constraints takes care of the

possibility that several VNFs can be located on the same node, including on the source or destination nodes.

1 if v = vselse

v∈V (13)

1 if v = vdelse

v∈V. (14)

Link capacity. For ,

. (15)

[Naik*, 5(11): November 2018] ISSN 2348 – 8034
DOI- 10.5281/zenodo.1482356 Impact Factor- 5.070

 (C)Global Journal Of Engineering Science And Researches

37

Node capacity. For v ∈V VNF,

. (16)

Note that, since the solutions of the pricing problems for all requests are independent, we solve in parallel the

corresponding ILPs to reduce the overall computational time.

Speeding the solution of the pricing problem with Dijkstra algorithm. As discussed above, the pricing problem can

be solved using an ILP. However, it can be solved more quickly using the observationthat it is equivalent to a

constrained shortest path in the layered graph. The weight wiof the link at layer iis equal to

,

and the weight of the link going from layer ito layer i+1 at node v is equal to

.

Without the capacity constraints, the pricing problem becomes a simple shortest path problem. Since the dual values

of the constraints (9) and (10) cannot be negative, we use the Dijkstra algorithm to solve it. If we obtain unfeasible

paths, i.e., if they use more capacity than available, they should be discarded, and the pricing problem should be

solved again with the capacity constraints. In such a case, we then either solve the ILP formulation of the pricing

problem, or use a shortest path dynamic programming algorithm with resource constraints, see, e.g., [21]. By

limiting the number of solutions with capacity constraints, we are able to speed up the column generation process, as

shown in the next section.

VI. LIMITING FUNCTION REPLICAS

We now consider the case in which an operator is limited by the number of replicas of each virtualized function.

Such scenario may occur when the operator has a limited budget for its license cost or when the licenses provided

for a function only allow a certain number of replicas in the network.

Having a limited number of preset NFV capable nodes, as done in Section VII-D, is a simple addition to the models.

However, limiting the number of function replicas, which may be placed on any node, increases greatly the

complexity of the models and the computational times. Indeed, this introduces a large number of binary variables in

the model.

In Section VI-A, we provide again two models, the first one is an ILP and the second one uses a column generation

decomposition. As the complexity of the second model is high, we introduce in Section VI-B a heuristic algorithm

to solve the problem for large networks. The heuristic first finds a good placement of the network functions by

solving a variant of a capacitated k-mean clustering problem (or facility location problem) using an ILP, and then

uses this placement in the CG model to find a solution of the problem without replicas limit, by constraining the

function placement.

A. Models

The models are extensions of NFV_ILP and NFV_CG, as described below, and are called NFV_ILP+ and

NFV_CG+, respectively. In both new models, we introduce a new set of variables, bvf, indicating if function f is
installed on node v. We can now limit the total number of functions in the network using the following constraints in

both models.

, (17)

v∈VVNF

where Lf represents the maximum number of replicas of function f.

In the NFV_ILP + model, we then limit the placement of functions for every request with the following constraints:

asd,c,iv≤ bvficv∈V VNF, (vs,vd) ∈SD,

c∈C sd,0 <i<nc. (18)

[Naik*, 5(11): November 2018] ISSN 2348 – 8034
DOI- 10.5281/zenodo.1482356 Impact Factor- 5.070

 (C)Global Journal Of Engineering Science And Researches

38

In the NFV_CG+ model, a Service Path can only be used if all the locations where its functions are executed have

the corresponding function installed. In other words, a function f must be installed at the location v, i.e., bvf= 1, if any

service path using this location to execute the function f is used. This can be expressed using the following
constraints

whereM ≥|SD|×|C| and βvf

p= 1 if function f needs to be installed on node v for path p.

Since , we can elimi-

sd sd

nate the M constant at the expense of a higher number of constraints. Constraints (19) are then rewritten:

 ,

c∈Csd,(vs,vd) ∈SD. (20)

B. Pricing Problem

We introduce the set of variables βvfinto the Pricing Problem to keep track of the function placement. Note that

chains can contain multiple occurrences of the same function, and that this is the purpose of variables αvfic, allowing

a function to intervene several times (e.g., firewall application) in a service chain, and to be run in different

locations, i.e., potentially a different one for each occurrence.

The objective function of the Pricing Problem for a given request (vs,vd,c,Dsd
c) for NFV_CG becomes:

As in the RMP formulation, we add the following two sets of constraints for the number of replicas in the network.

First, we limit the number of replicas in the network:

. (21)

Then, we make sure that functions can only be executed on nodes where they are installed:

. (22)

Unlike the Pricing Problem of NFV_CG, it is not possible to find a solution using the Dijkstra algorithm due to

potential multiple occurrences of the same function in chains, and we thus use an ILP solver (e.g., CPLEX) or a

resource constrained shortest path algorithm [21] to obtain its solution. Indeed, links between layers in the layered

graph give the locations where the functions of a given chain are executed. However, we need to be careful when

considering the function locations. Indeed, if all multiple occurrences are run at the same location (i.e., node), only

one licence is required. A path algorithm, such as the Dijkstra algorithm, is not able to compute the number of

required licences properly: it would keep adding more licences as it would go through the same function location.

C. Heuristics (NFV_Algo
+
)

As shown in Section VII, NFV_CG can find quickly nearoptimal solutions to the SFC placement problem, when the

number of function replica is not limited. However, NFV_CG+ has a much longer execution time and is not able to

solve data instances using a large network such as Germany. Thus, we propose a heuristic solution using NFV_CG,

called NFV_Algo+. First, we consider the placement of functions in the network in the same fashion as a facility

location problem, as explained below. Then, we use NFV_CG to solve the routing of the requests once the

placement has been chosen.

[Naik*, 5(11): November 2018] ISSN 2348 – 8034
DOI- 10.5281/zenodo.1482356 Impact Factor- 5.070

 (C)Global Journal Of Engineering Science And Researches

39

a) Location problem:The core of the method is a variant of a k-mean clustering problem. For each function, we have

to choose k = Lf possible locations. As our goal is to minimize the network bandwidth, a good solution is to choose
the locations to minimize the request path lengths, that is the distances between the sources and destinations of the

requests and the function locations of the service chains associated with the requests. Our solution is not therefore

not exactly a k-mean clustering, but a generalization, as we have link and node capacity constraints to satisfy. We

thus model the placement problem as an ILP.

We search for each function f exactly Lf nodes that can host the function. Since each node has a limited capacity, we

also need to consider on which node the function of a specific request must be executed. We thus use the two

following sets of variables.

• xsd,c
vi∈{0,1}, where xsd,c

vi= 1 if the ith function of chain c for demand (vs,vd) is installed on node v.

• bvf∈{0,1}, where bvf= 1 if function f is installed on v.

The problem is formulated as follows.

Eq. (23)

We want to minimize the distance of the route of each request to the location of the functions (23). The distance is

given by the sum of the distance to the source, d(vs,v), and the distance to the destination, d(vd,v).

,

v∈VVNF 0 ≤ i≤ nc, f = fic

(24) bvfic≥ xsd,cvi(vs,vd) ∈SD, c ∈Csd, 0 ≤ i≤ nc, v ∈V VNF, f = fi
c.

(25)The functions of a request need to be executed on exactly one node (24) and they can be executed only on nodes
on which the function is installed

v∈VVNF

Finally, we have the node capacity (26) and the maximum license constraints (27).

VII. NUMERICAL RESULTS

In this section, we report the numerical results. First, we describe the data sets we used (Section VII-A). Then, we

present the performance of NFV_CG in Section VII-B. Next, in Section VII-C, we compare the performance of the

two models described in Section IV and look at the compromise between the number of VNF nodes and the

bandwidth requirements in Section VII-D. Finally, we compare the different solutions we propose for the case with a

limited number of possible VNF replicas and study the impact on bandwidth requirement in Section VII-E.

The computer we use for running the experiments is equipped with an Intel(R) Xeon(R) CPU W5580 @ 3.20 GHz

and 64GB of RAM.

A. Data Sets

To emulate a realistic traffic, we used the data in [22] in conjunction with the four chains presented in Table IV as

[Naik*, 5(11): November 2018] ISSN 2348 – 8034
DOI- 10.5281/zenodo.1482356 Impact Factor- 5.070

 (C)Global Journal Of Engineering Science And Researches

40

TABLE IV

SERVICE CHAIN REQUIREMENTS [17]

TABLE V NETWORK DATA

 Each SFC is composed of a sequence of network virtual functions and requires a specific amount of bandwidth. We

use the distribution of traffic from [22] to know the number of requests of each service type. For example, a 1TB

network load is composed of 699GB of Video Streaming. This amount of traffic correspond to an equivalent of

 requests.

We then choose at random the source and destination for each request and then aggregate the resulting set of

requests with respect to their source and destination nodes. Overall, we have a total of 4 × n2 demands (all types of

chains for every node pair).

When choosing the set of nodes which can host VNFs, we select the nodes based on their betweenness centrality,

which is the number of paths going through the node, when considering the shortest paths between all pairs of

nodes. Betweenness centrality is a good indicator of the importance of a node in the network. Programs were tested

on three different networks, whose characteristics are described in Table V.

B. Performance of Model NFV_CG

Table VI summarizes the performance of Model NFV_CG. We present results for the 3 different topologies for a

selected number of VNF nodes, for about half the size of networks. For each instance, we simulate an overall traffic

of 1 Tbps.

In the last three columns, we give the optimal value of the linear relaxation (), the value of the ILP solution (z˜ILP)

and the accuracy of the ILP solution ε. In most instances, ε = 0, meaning that we obtain the optimal ILP solution. For

the cases where ε >0, its value remains very small, meaning that z˜ILPis very close to the optimal ILP value.

Lastly, we observe that the number of generated columns is fairly small in order to reach very accurate ILP

solutions, taking into account that we need to select one column per request, i.e., 360, 840 and 9,800 columns for

data instances associated with networks Internet1, Atlanta, and Germany, respectively.

C. Comparison ILP vs CG

In Figure 5, we compare the two models presented in Section IV on the Germany network. We also compare the

computational times for NFV_CG when the Pricing Problem is solved using CPLEX and Dijkstra. We assume all

nodes are

[Naik*, 5(11): November 2018] ISSN 2348 – 8034
DOI- 10.5281/zenodo.1482356 Impact Factor- 5.070

 (C)Global Journal Of Engineering Science And Researches

41

Table VI numerical results

VNF enabled nodes and the number of requests varies between 10 and 100% of the requests in an all-to-all traffic
scenario.

Model NFV_ILP is solved exactly using the CPLEX ILP solver, while Model NFV_CG is solved using the solution

scheme described in Section V, i.e., with anε-optimal solution scheme. As the accuracy of the solutions of Model

NFV_CG is very good, the solutions of both models are identical. However, NFV_ILP takes more time as the

number of requests increases. Indeed, when reaching 90% requests in the all-toall scenario, NFV_ILP takes more

than one hour to find the optimal solution and does not provide a solution in less than a day for 100%.

Comparatively, NFV_CG outputs anε- optimal solution with all requests in two minutes and a half. Using Dijkstra,

the solution is found in 8 seconds. See Figure 5 for the comparison of computing times, using the ratio of the

computational times.

D. Bandwidth Requirement and Delay vs. Number of VNF Capable Nodes

In this set of experiments, we want to study the impact of the number of VNF nodes on the bandwidth requirement

and the delay. Generating numerous VNF nodes could be quite costly (e.g., license price, CPU utilization, energy

consumption), and should be compensated by a significant decrease in the bandwidth requirement or justified by

unacceptable delays otherwise. Our results show that this is not the case. We next discuss them in detail.

Figure 3 shows the bandwidth used for an overall 1 Tbps traffic when the number of VNF nodes varies. As we allow

more VNF nodes, the overall required bandwidth in the network decreases. This is as expected. Since every request

requires a SFC, their provisioning must go through VNF nodes in the required order, possibly requesting more hops

than in one of the shortest paths in the network. However, what we learn from Figure 3 is that, when reaching 50%

for VNF capable nodes, the bandwidth gain is getting significantly smaller.

We next investigated the increase of the number of VNFs with respect to the number of hops. Results are described

in Figure 4 using a box-and-whisker plot. It shows that the median value for the number of hops stabilizes as soon as

the number of VNF nodes reaches 3, 9, 9 for the Internet2, Atlanta and Germany networks, respectively. While the

stabilization occurs later with bandwidth requirements, these results say that, indeed, only a few requests are

affected when increasing.

[Naik*, 5(11): November 2018] ISSN 2348 – 8034
DOI- 10.5281/zenodo.1482356 Impact Factor- 5.070

 (C)Global Journal Of Engineering Science And Researches

42

the number of VNFs beyond the 3, 9 and 9 values for Internet2, Atlanta and Germany networks, respectively.

Consequently, for homogeneous traffic as in our experiments, there is little advantage both in terms of number of

hops and bandwidth requirements to increase much the number of VNF nodes. It might be slightly different with

heterogeneous traffic.

E. Limited Number of Function Replicas

We now evaluate the three methods proposed for a limited number of function replicas, NFV_ILP+, NFV_CG+ and

the heuristic algorithm NFV_Algo+. We consider the scenarios presented in Section VII. All nodes can potentially

host VNFs. We first present the execution times and then the evolution of the bandwidth usage as a function of the
number of allowed function replicas.

b) Execution Times: We provide in Figure 6 the execution times of the NFV_ILP+, NFV_CG+, and of

NFV_Algo+ for the Internet2, Atlanta, and Germany data sets.

We first observe that, as expected, the more stringent the constraint on the number of function replicas, the harder it

is for the methods to find a solution. For Internet2, NFV_CG+ only takes a few seconds to propose a solution when

the number of replications is 10 (equal to the number of nodes), 9 or 8. However, more than 1 day is necessary to

solve the case in which the number of allowed replications is 4. NFV_ILP+ and NFV_Algo+ experience a similar

trend, for lower order of execution times (respectively between 4 s and 1 min and between 400 ms and 4 s).

The second observation is that the execution time of NFV_ILP+ becomes almost prohibitive (more than 1 day)

[Naik*, 5(11): November 2018] ISSN 2348 – 8034
DOI- 10.5281/zenodo.1482356 Impact Factor- 5.070

 (C)Global Journal Of Engineering Science And Researches

43

Fig. 5. Computational times of NFV_ILP and NFV_CG on the Germany network. NFV_ILP does not provides results for

80% and up in a reasonable time.

when the number of allowed function replications is small. In fact, we were not able to run NFV_ILP+ for networks

larger than Internet2. On the contrary, NFV_CG and NFV_Algo+ have low execution times for any number of

replications. Considering larger networks, NFV_ILP+ runs on Atlanta for any number of replicas, but not on

Germany, for which, only NFV_Algo+ provides solutions.

Fig. 6. Execution times of the three methods, the ILP, the column generation model, and the algorithm NFV_Algo+, for

different limits on the number of function replicas. (a) internet2. (b) atlanta. (c) germany50.

[Naik*, 5(11): November 2018] ISSN 2348 – 8034
DOI- 10.5281/zenodo.1482356 Impact Factor- 5.070

 (C)Global Journal Of Engineering Science And Researches

44

c) Replica Placement: We provide the results of the function replica placement in Figure 7 for Internet2 and

in Figure 8 for Germany. For each node and for each function, we present the percentage of requests associated with

the function replica. A value of 0 means that there is no function replica on the node. The height of the box is set to

the maximum value over all nodes, respectively 36% for Internet2 and 20% for Germany. For Internet2, the

maximum number of function replicas was set to 5. We compare the result of the first phase of NFV_Algo+ (placing

function replicas) to the one of the ILP. We observe that the optimal solution provided by the ILP has selected 5

nodes (only a replica of the IDPS function is in another node), which are central in the network. This confirms the

intuition that this kind of nodes are good candidates, as they have a small average distance to the other nodes, which

are sources and destinations of requests. This intuition is at the core of NFV_Algo+ first phase, which selects a set of

nodes minimizing the distances between the sources and destinations of the requests and the replica positions.
NFV_Algo+ also selected 5 nodes (only 4 replicas of the VOC function are in 4 other nodes). Three of them are

common with the ILP, and two are different. The two last ones seem less central, but they have a high degree, which

reduces their distances to the other nodes.

For Germany, the number of function replicas was limited to 11. Only the result of NFV_Algo+ is presented as the

ILP does not run on the network. We observe that mostly central nodes with often a high degree are selected.

Indeed, again, they are nodes with a small average distance to the other nodes, and thus are good candidates for

function replicas. We thus validate NFV_Algo+, which provides good solutions to the placement problem. We now

study the bandwidth usage.

Fig. 7. Placement of functions given by the ILP (a) and by NFV_Algo

+
(b) when the number of function replicas is limited to 5 for

Internet2. Bar height in a node gives the percentage of requests (between 0 and 36%) associated with the node function replica.

[Naik*, 5(11): November 2018] ISSN 2348 – 8034
DOI- 10.5281/zenodo.1482356 Impact Factor- 5.070

 (C)Global Journal Of Engineering Science And Researches

45

d) Bandwidth Usage: Figures 9a, 9b and 9c show the bandwidth usage respectively for Internet2, Atlanta, and

Germany. The number of allowed replications varies between n and 1, where n is the number of nodes in the

network. The results are given using NFV_Algo+ (and additionally using ILP for Internet2). To assess the quality of

the solutions, we compare the results given using NFV_Algo+ with the results of the relaxation of NFV_CG+, which

constitutes a lower bound on the optimal solution. The gap for NFV_CG+ is higher than the one of NFV_CG. The

Fig. 8. Placement of functions given by NFV_Algo

+
when the number of function replicas is limited to 11 for

Germany. Bar height in a node gives the percentage of requests (between 0 and 20%) associated with the node

function replica.

Fig. 9. Bandwidth usage as a function of the number of allowed function replicas. (a) internet2. (b) atlanta.

(c) germany50.

[Naik*, 5(11): November 2018] ISSN 2348 – 8034
DOI- 10.5281/zenodo.1482356 Impact Factor- 5.070

 (C)Global Journal Of Engineering Science And Researches

46

reason is that the limitation on the number of replicas requires the introduction of new constraints, which are hard to

relax efficiently.
3
However, the gap is within few percent for most of the values. For small number of replicas, the

e) gap is higher. However, the difference to optimal can be a lot smaller than the gap. For instance, for

Internet2, we see that the largest gap is around 20%, when the difference to optimal given by NFV_ILP+ is only 4%.

To summarize, the solutions given by NFV_Algo+ are within few percent from optimal for most values (and 16 %

for the worst case) and for the three networks. This shows that NFV_Algo+ provides good solutions.

First, we need at least 4, 4, and 11 function replicas for Internet2, Atlanta and Germany, respectively. We observe a

general trend for the three networks. Starting from n, there is a first phase in which the number of function

replications can be reduced without affecting significantly the bandwidth usage. This first phase corresponds to

values between 10 and 6 for Internet2, 15 and 7 for Atlanta, 50 and 20 forGermany. In a second phase, on the

contrary, the number of function replications can be reduced only at the cost of a strong increase of bandwidth

usage: from 1,932 to 2,392 (+24 %) for Internet2, from 2,506 to 2,974 (+19%) for Atlanta, from 4,095 to 4,860
(+19%) for Germany. Another way to state it, as a takeaway for a network operator: having a few more replicas than

necessary leads to important gains, when adding further supplementary replicas has less impact.

F. Random Topologies:

To assess the impact of network parameters such as topology size in terms of number of nodes and links, traffic load

and demand heterogeneity, we now focus on random instances. Instance generation. We generate random networks

using two parameters: the number of nodes n and the edge density p. Starting from a random tree of size n, we add a

link between each unconnected pair of nodes with a probability p. Once a graph is generated, we create a traffic

matrix similarly to Section VII-A. For a given load L, we generate a request by choosing at random a pair of nodes

and a random service until the sum of the load over all the requests is equal to L. We then aggregate requests with

the same source, destination and service chain.

We consider uniform and non-uniform traffic. We generate uniform traffic by selecting each pair of nodes uniformly

at random. For non-uniform traffic, we introduce a population and distance model [25]. We generate the population

of the network nodes according to a power law distribution with parameter α. The population of the i-th node is

proportional to by 1/ iα. The probability to chose a pair of nodes (u,v) is then given by (Pu×Pv)/ Duv, where Puis the

population of u and Duvis the distance in number of hops between u and v. Finally, to generate the service chains, we

vary the number of chains (nc), the number of functions (nf) and the size of the chains sc. We build ncchains by

choosing uniformly at random scfunctions in the set of nffunctions. We then associate a bandwidth requirement (in

kB) to each chain uniformly at random in the range [50,4096]. We also consider the service chains presented in

Section VII-A.

Experiments. We consider two metrics here: the minimum required bandwidth as well as the critical number of
licenses. We define formally the critical number of licenses as the minimum number of licenses for which the

bandwidth required does not exceed θ% of the bandwidth required without replica limit. We look at different values

of θ: 0, 1, 5, and 10.

Number of nodes. First, we look at the critical number of licenses needed when the number of nodes varies in Figure

10. The critical number of licenses grows linearly with the number of nodes: from 6 licenses with 10 nodes to 13

licenses with 20 nodes when θ = 0. Note that the value of θ chosen to define the critical number of licenses of course

changes the values of the metric, but does not change the global trend observed when varying the network

parameters.

Edge density. However, the density of the graph has a higher influence on the number of critical licenses. Indeed, we

observe in Figure 11 that a sparse network requires only 5 licenses, but a complete network requires 9 licenses. As
the density increases, most of the requests can be routed on one-hop paths. Thus, a slight decrease in the number of

[Naik*, 5(11): November 2018] ISSN 2348 – 8034
DOI- 10.5281/zenodo.1482356 Impact Factor- 5.070

 (C)Global Journal Of Engineering Science And Researches

47

Fig. 10.Critical number of licenses as a function of the number of nodes. (p = 0.1, uniform traffic (1 TB)).

Fig. 11. Critical number of licenses as a function of edge probability (n = 10 , uniform traffic (1 TB)).

licenses can greatly increase the bandwidth required as some requests might now be routed on a longer path. These

results confirm the findings of Section VII, as ISP (Internet Service Provider) topologies such as those we studied,

usually have a low density (e.g., 0.1 for Atlanta and 0.03 for Germany).

Heterogeneity coefficient.As we can see in Figure 12 , the higher the difference in population, the lower the critical

number of licenses is. When the population is concentrated on a few nodes (for high value of α), most of the traffic

is between these nodes. Thus, it is easier to cover a significant part of the requests with only a few licenses by
selecting nodes in the paths of the largest requests.

Traffic load. In Figure 13, we look at the critical number of licenses when we vary the traffic load. We vary the total

load between 1 GB and 1 TB. We can observe the critical number of licenses is barely impacted by the load of the

network. In the same vein, we observed that the impact of the service chains on the critical number of licenses is not

noticeable.

In conclusion, the critical number of licenses is mostly impacted by the shape of the network (size and density) as

well as the homogeneity of the traffic. The traffic load and the type of services do not have any noticeable impact.

[Naik*, 5(11): November 2018] ISSN 2348 – 8034
DOI- 10.5281/zenodo.1482356 Impact Factor- 5.070

 (C)Global Journal Of Engineering Science And Researches

48

Fig. 12. Critical number of licenses as a function of the coefficient of heterogeneity (n = 10, p = 0.1, 1TB).

Fig. 13 Critical number of licenses as a function of the

load (n = 10,

VIII. CONCLUSION

In this paper, we look at the Service Function Chain Placement problem and propose two ILP models to solve it. We

show that the first compact ILP model does not scale well for large networks. However, with a decomposition model
such as Model NFV_CG, we can solve exactly the Service Function Chain Provisioning Problem. This leads to a

first model that scales with an increasing number of nodes, but also, with an increase of the number of requests with

service chain requirements.

We also tackle the bandwidth minimization with a limit on the number of VNF replicas. To this end, we extended

our ILP models and proposed an heuristic algorithm based on NFV_CG and a capacitated k-mean clustering

problem. Using Model NFV_CG, we investigated the tradeoff among the network bandwidth requirement, the

number of VNF capable nodes, and the limit on the number of VNF replicas. We found out that diminishing returns

occur when adding VNF capable nodes, and that, when more than 50% of the network can host VNF, they are only

few benefits. A similar tradeoff exists for the number of replicas: when starting from the configurations with the

minimum possible number of replicas, adding a small number of them decreases significantly the bandwidth usage,
but then adding more replicas shows a little extra gain.

[Naik*, 5(11): November 2018] ISSN 2348 – 8034
DOI- 10.5281/zenodo.1482356 Impact Factor- 5.070

 (C)Global Journal Of Engineering Science And Researches

49

REFERENCES
1. (2016). NFV Basics: A Guide to NFV Implementation, Challenges and Benefits. [Online]. Available:

http://searchsdn.techtarget.com/ essentialguide/NFV-basics-A-guideto-NFV-implementation-challengesand-

benefits

2. (Feb. 2015). Service Chaining in Carrier Networks. [Online]. Available: http://www.qosmos.com/wp-

content/uploads/2015/02/Service-Chainingin-Carrier-Networks_WP_Heavy-Reading_Qosmos_Feb2015.pdf

3. Y. Li and M. Chen, ―Software-defined network function virtualization: A survey,‖ IEEE Access, vol. 3, pp.

2542–2553, 2015.

4. H. A. Alameddine, L. Qu, and C. Assi, ―Scheduling service function chains for ultra-low latency network

services,‖ in Proc. 13th Int. Conf. Netw. Service Manage. (CNSM), 2017, pp. 1 – 9.

5. R. Mijumbiet al., ―Design and evaluation of algorithms for mapping and scheduling of virtual network

functions,‖ in Proc. 1st IEEE Conf. Netw. Softwarization (NetSoft), Apr. 2015, pp. 1 – 9.
6. A. Dwaraki and T. Wolf, ―Adaptive service-chain routing for virtual network functions in software-defined

networks,‖ in Proc. Workshop Hot Topics MiddleboxesNetw. Function Virtualization (HotMIddlebox), 2016,

pp. 32–37.

7. A. Gember, P. Prabhu, Z. Ghadiyali, and A. Akella, ―Toward softwaredefinedmiddlebox networking,‖ in Proc.

ACM Workshop Hot Topics Netw. (HotNets), 2016, pp. 7–12.

8. J. G. Herrera and J. F. Botero, ―Resource allocation in NFV: A comprehensive survey,‖ IEEE Trans. Netw.

Service Manage., vol. 13 , no. 3, pp. 518–532, Sep. 2016.

9. R. Mijumbiet al., ―Network function virtualization: State-of-the-art and research challenges,‖ IEEE Commun.

Surveys Tuts., vol. 18, no. 1 , pp. 236–262, 1st Quart., 2016.

10. S. D’Oro, L. Galluccio, S. Palazzo, and G. Schembra, ―Exploiting congestion games to achieve distributed

service chaining in NFV networks,‖ IEEE J. Sel. Areas Commun., vol. 35, no. 2, pp. 407–420 , Feb. 2017.
11. B. Martini, F. Paganelli, P. Cappanera, S. Turchi, and P. Castoldi, ―Latency-aware composition of Virtual

Functions in 5G,‖ in Proc. IEEE Conf. Netw. Softwarization (NetSoft), Apr. 2015, pp. 1 – 6.

12. R. Riggioet al., ―Virtual network functions orchestration in wireless networks,‖ in Proc. Int. Conf. Netw.

Service Manage. (CNSM), 2015 , pp. 108–116.

13. A. Gupta, M. Habib, P. Chowdhury, M. Tornatore, and B. Mukherjee, ―Joint virtual network function

placement and routing of traffic in operator networks,‖ Dept. Comput. Sci., Univ. California Davis, Davis, CA,

USA, Tech. Rep., 2015.

14. A. Gupta, B. Jaumard, M. Tornatore, and B. Mukherjee, ―Service chain (SC) mapping with multiple SC

instances in a wide area network,‖ in Proc. IEEE Global Telecommun. Conf. (GLOBECOM), Dec. 2017 , pp.

1 – 6.

15. A. Gupta, B. Jaumard, M. Tornatore, and B. Mukherjee, ―A scalable approach for service chain (SC) mapping

with multiple SC instances in a wide-area network,‖ IEEE J. Sel. Areas Commun., to be published, doi:
10.1109/JSAC.2018.2815298.

16. M. C. Luizelli, L. R. Bays, L. S. Buriol, M. P. Barcellos, and L. P. Gaspary, ―Piecing together the NFV

provisioning puzzle: Efficient placement and chaining of virtual network functions,‖ in Proc. IFIP/IEEE Int.

Symp. Integr. Netw. Manage. (IM), May 2015 , pp. 98–106.

17. M. Savi, M. Tornatore, and G. Verticale, ―Impact of processing costs on service chain placement in network

functions virtualization,‖ in Proc. IEEE Conf. Netw. Function Virtualization Softw. Defined Netw. (NFV-SDN),

Nov. 2015, pp. 191–197.

18. M. Bari, S. R. Chowdhury, R. Ahmed, R. Boutaba, and O. C. M. Duarte, ―Orchestrating virtualized network

functions,‖ IEEE Trans. Netw. Service Manage., vol. 13, no. 4, pp. 725–739, Dec. 2016.

19. A. Mohammadkhanet al., ―Virtual function placement and traffic steering in flexible and dynamic software

defined networks,‖ in Proc. IEEE Int. Workshop Local Metropolitan Area Netw., Apr. 2015, pp. 1 – 6.
20. V. Chvatal, Linear Programming. San Francisco, CA, USA: Freeman, 1983.

21. S. Irnich and G. Desaulniers, Shortest Path Problems With Resource Constraints. Boston, MA, USA: Springer,

2005, pp. 33–65.

22. CISCO Visual Networking Index: Forecast and Methodology, 2014–2019, CISCO, May 2015.

23. (2014). Internet2 Network Infrastructure Topology. [Online]. Available:

http://www.internet2.edu/media_files/422

[Naik*, 5(11): November 2018] ISSN 2348 – 8034
DOI- 10.5281/zenodo.1482356 Impact Factor- 5.070

 (C)Global Journal Of Engineering Science And Researches

50

24. S. Orlowski, M. Pióro, A. Tomaszewski, and R. Wessäly, ―SNDlib 1.0— Survivable network design library,‖ in

Proc. 3rd Int. Netw. Optim. Conf. (INOC), Spa, Belgium, Apr. 2007, pp. 276–286.

25. A. Betkeret al., ―Reference transport network scenarios,‖ BMBF Multi Tera Net, Tech. Rep., Jul. 2003.A.
Tomassilli, F. Giroire, N. Huin, and S. Pérennes, ―Provably efficient algorithms for placement of service

function chains with ordering constraints,‖ in Proc. IEEE Int. Conf.

